home *** CD-ROM | disk | FTP | other *** search
/ Sprite 1984 - 1993 / Sprite 1984 - 1993.iso / lib / tex / inputs / epic / sqrt.tex < prev   
LaTeX Document  |  1991-05-21  |  4.5 KB

open in: MacOS 8.1     |     Win98     |     DOS

view JSON data     |     view as text

This file was processed as: LaTeX Document (document/latex).

You can browse this item here: sqrt.tex

ConfidenceProgramDetectionMatch TypeSupport
100% dexvert LaTeX Document (document/latex) magic Supported
1% dexvert Corel 10 Texture (image/corel10Texture) ext Unsupported
1% dexvert Croteam texture file (image/croteamTextureFile) ext Unsupported
1% dexvert Text File (text/txt) fallback Supported
100% file LaTeX document text default
99% file LaTeX document, ASCII text default
100% checkBytes Printable ASCII default
100% perlTextCheck Likely Text (Perl) default
100% detectItEasy Format: plain text[LF] default (weak)



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 5c 61 70 70 65 6e 64 69 | 78 0a 25 5c 73 65 63 74 |\appendi|x.%\sect|
|00000010| 69 6f 6e 7b 45 73 74 69 | 6d 61 74 69 6e 67 20 50 |ion{Esti|mating P|
|00000020| 79 74 68 61 67 6f 72 65 | 61 6e 20 53 71 75 61 72 |ythagore|an Squar|
|00000030| 65 2d 72 6f 6f 74 7d 0a | 5c 6d 65 64 73 6b 69 70 |e-root}.|\medskip|
|00000040| 5c 6e 6f 69 6e 64 65 6e | 74 0a 7b 5c 4c 61 72 67 |\noinden|t.{\Larg|
|00000050| 65 5c 62 66 20 41 70 70 | 65 6e 64 69 78 20 41 5c |e\bf App|endix A\|
|00000060| 20 5c 20 5c 20 45 73 74 | 69 6d 61 74 69 6e 67 20 | \ \ Est|imating |
|00000070| 50 79 74 68 61 67 6f 72 | 65 61 6e 20 53 71 75 61 |Pythagor|ean Squa|
|00000080| 72 65 2d 72 6f 6f 74 7d | 0a 0a 5c 6d 65 64 73 6b |re-root}|..\medsk|
|00000090| 69 70 5c 6e 6f 69 6e 64 | 65 6e 74 0a 46 6f 72 20 |ip\noind|ent.For |
|000000a0| 74 68 65 20 6c 69 6e 65 | 20 64 72 61 77 69 6e 67 |the line| drawing|
|000000b0| 20 63 6f 6d 6d 61 6e 64 | 73 20 64 65 73 63 72 69 | command|s descri|
|000000c0| 62 65 64 20 69 6e 20 74 | 68 65 20 6d 61 69 6e 20 |bed in t|he main |
|000000d0| 73 65 63 74 69 6f 6e 73 | 20 6f 66 20 74 68 69 73 |sections| of this|
|000000e0| 0a 64 6f 63 75 6d 65 6e | 74 2c 20 77 65 20 6e 65 |.documen|t, we ne|
|000000f0| 65 64 20 74 6f 20 65 73 | 74 69 6d 61 74 65 20 74 |ed to es|timate t|
|00000100| 68 65 20 50 79 74 68 61 | 67 6f 72 65 61 6e 20 73 |he Pytha|gorean s|
|00000110| 71 75 61 72 65 2d 72 6f | 6f 74 20 69 6e 20 6f 72 |quare-ro|ot in or|
|00000120| 64 65 72 20 74 6f 0a 64 | 65 74 65 72 6d 69 6e 65 |der to.d|etermine|
|00000130| 20 74 68 65 20 6c 65 6e | 67 74 68 20 6f 66 20 74 | the len|gth of t|
|00000140| 68 65 20 6c 69 6e 65 20 | 28 61 6c 6f 6e 67 20 69 |he line |(along i|
|00000150| 74 73 20 73 6c 6f 70 65 | 29 2e 20 4d 6f 72 65 20 |ts slope|). More |
|00000160| 70 72 65 63 69 73 65 6c | 79 2c 20 77 65 20 6e 65 |precisel|y, we ne|
|00000170| 65 64 0a 74 6f 20 65 73 | 74 69 6d 61 74 65 20 74 |ed.to es|timate t|
|00000180| 68 65 20 6e 75 6d 62 65 | 72 20 6f 66 20 73 65 67 |he numbe|r of seg|
|00000190| 6d 65 6e 74 73 20 6f 66 | 20 61 20 67 69 76 65 6e |ments of| a given|
|000001a0| 20 6c 65 6e 67 74 68 20 | 6e 65 65 64 65 64 20 74 | length |needed t|
|000001b0| 6f 20 64 72 61 77 20 61 | 20 6c 69 6e 65 2e 0a 5c |o draw a| line..\|
|000001c0| 54 65 58 5c 20 64 6f 65 | 73 20 6e 6f 74 20 70 72 |TeX\ doe|s not pr|
|000001d0| 6f 76 69 64 65 20 66 6f | 72 20 66 6c 6f 61 74 69 |ovide fo|r floati|
|000001e0| 6e 67 20 70 6f 69 6e 74 | 20 63 61 6c 63 75 6c 61 |ng point| calcula|
|000001f0| 74 69 6f 6e 73 2c 20 61 | 6e 64 20 74 68 75 73 20 |tions, a|nd thus |
|00000200| 74 68 65 72 65 20 61 72 | 65 20 6e 6f 0a 64 69 72 |there ar|e no.dir|
|00000210| 65 63 74 20 6d 65 61 6e | 73 20 6f 66 20 63 61 6c |ect mean|s of cal|
|00000220| 63 75 6c 61 74 69 6e 67 | 20 74 68 65 20 61 62 6f |culating| the abo|
|00000230| 76 65 20 73 71 75 61 72 | 65 2d 72 6f 6f 74 2e 20 |ve squar|e-root. |
|00000240| 4d 6f 73 74 20 73 74 61 | 6e 64 61 72 64 20 6e 75 |Most sta|ndard nu|
|00000250| 6d 65 72 69 63 61 6c 0a | 74 65 63 68 6e 69 71 75 |merical.|techniqu|
|00000260| 65 73 20 61 72 65 20 69 | 74 65 72 61 74 69 76 65 |es are i|terative|
|00000270| 20 61 6e 64 20 77 6f 75 | 6c 64 20 62 65 20 74 6f | and wou|ld be to|
|00000280| 6f 20 73 6c 6f 77 20 77 | 68 65 6e 20 75 73 65 64 |o slow w|hen used|
|00000290| 20 77 69 74 68 20 5c 54 | 65 58 5c 20 66 6f 72 20 | with \T|eX\ for |
|000002a0| 6c 61 63 6b 0a 6f 66 20 | 66 6c 6f 61 74 69 6e 67 |lack.of |floating|
|000002b0| 20 70 6f 69 6e 74 20 63 | 61 6c 63 75 6c 61 74 69 | point c|alculati|
|000002c0| 6f 6e 73 2c 20 61 6e 64 | 20 69 6e 20 70 61 72 74 |ons, and| in part|
|000002d0| 69 63 75 6c 61 72 2c 20 | 72 65 61 6c 20 64 69 76 |icular, |real div|
|000002e0| 69 73 69 6f 6e 2c 20 73 | 69 6e 63 65 0a 63 61 6c |ision, s|ince.cal|
|000002f0| 63 75 6c 61 74 69 6f 6e | 20 6f 66 20 73 75 63 68 |culation| of such|
|00000300| 20 61 20 73 71 75 61 72 | 65 2d 72 6f 6f 74 20 69 | a squar|e-root i|
|00000310| 73 20 6e 65 65 64 65 64 | 20 76 65 72 79 20 66 72 |s needed| very fr|
|00000320| 65 71 75 65 6e 74 6c 79 | 2e 0a 0a 41 20 73 69 6d |equently|...A sim|
|00000330| 70 6c 65 20 6e 6f 6e 2d | 69 74 65 72 61 74 69 76 |ple non-|iterativ|
|00000340| 65 20 66 6f 72 6d 75 6c | 61 20 66 6f 72 20 65 73 |e formul|a for es|
|00000350| 74 69 6d 61 74 69 6e 67 | 20 74 68 65 20 73 71 75 |timating| the squ|
|00000360| 61 72 65 2d 72 6f 6f 74 | 20 69 73 20 64 65 72 69 |are-root| is deri|
|00000370| 76 65 64 20 61 6e 64 0a | 64 65 73 63 72 69 62 65 |ved and.|describe|
|00000380| 64 20 62 65 6c 6f 77 2e | 0a 0a 5c 62 69 67 73 6b |d below.|..\bigsk|
|00000390| 69 70 5c 6e 6f 69 6e 64 | 65 6e 74 0a 7b 5c 62 66 |ip\noind|ent.{\bf|
|000003a0| 20 50 72 6f 62 6c 65 6d | 3a 20 7d 20 47 69 76 65 | Problem|: } Give|
|000003b0| 6e 20 24 61 24 20 61 6e | 64 20 24 62 24 2c 20 74 |n $a$ an|d $b$, t|
|000003c0| 6f 20 66 69 6e 64 20 24 | 63 24 20 3d 20 24 5c 73 |o find $|c$ = $\s|
|000003d0| 71 72 74 7b 61 5e 32 20 | 2b 20 62 5e 32 7d 24 20 |qrt{a^2 |+ b^2}$ |
|000003e0| 75 73 69 6e 67 0a 6f 6e | 6c 79 20 6f 70 65 72 61 |using.on|ly opera|
|000003f0| 74 69 6f 6e 73 20 69 6e | 20 5c 7b 24 2b 2c 2d 2c |tions in| \{$+,-,|
|00000400| 2a 2c 2f 24 5c 7d 2e 0a | 0a 57 65 20 63 61 6e 20 |*,/$\}..|.We can |
|00000410| 67 65 74 20 76 65 72 79 | 20 74 69 67 68 74 20 62 |get very| tight b|
|00000420| 6f 75 6e 64 73 20 6f 6e | 20 74 68 65 20 73 71 75 |ounds on| the squ|
|00000430| 61 72 65 2d 72 6f 6f 74 | 20 61 73 20 66 6f 6c 6c |are-root| as foll|
|00000440| 6f 77 73 2e 0a 57 69 74 | 68 6f 75 74 20 6c 6f 73 |ows..Wit|hout los|
|00000450| 73 20 6f 66 20 67 65 6e | 65 72 61 6c 69 74 79 2c |s of gen|erality,|
|00000460| 20 6c 65 74 20 24 61 20 | 5c 67 65 20 62 24 2e 20 | let $a |\ge b$. |
|00000470| 57 65 20 73 65 65 6b 20 | 61 20 73 69 6d 70 6c 65 |We seek |a simple|
|00000480| 20 24 6e 24 0a 73 75 63 | 68 20 74 68 61 74 3a 0a | $n$.suc|h that:.|
|00000490| 5c 5b 5c 73 71 72 74 7b | 61 5e 32 20 2b 20 62 5e |\[\sqrt{|a^2 + b^|
|000004a0| 32 7d 20 5c 67 65 20 61 | 20 2b 20 5c 66 72 61 63 |2} \ge a| + \frac|
|000004b0| 7b 62 7d 7b 6e 7d 5c 5d | 0a 0a 53 71 75 61 72 69 |{b}{n}\]|..Squari|
|000004c0| 6e 67 20 62 6f 74 68 20 | 73 69 64 65 73 2c 20 77 |ng both |sides, w|
|000004d0| 65 20 68 61 76 65 0a 5c | 5b 5c 62 65 67 69 6e 7b |e have.\|[\begin{|
|000004e0| 61 72 72 61 79 7d 7b 6c | 72 63 6c 7d 0a 5c 4c 65 |array}{l|rcl}.\Le|
|000004f0| 66 74 72 69 67 68 74 61 | 72 72 6f 77 20 26 20 61 |ftrighta|rrow & a|
|00000500| 5e 32 2b 62 5e 32 20 26 | 5c 67 65 26 20 61 5e 32 |^2+b^2 &|\ge& a^2|
|00000510| 20 2b 20 5c 64 69 73 70 | 6c 61 79 73 74 79 6c 65 | + \disp|laystyle|
|00000520| 5c 66 72 61 63 7b 62 5e | 32 7d 7b 6e 5e 32 7d 20 |\frac{b^|2}{n^2} |
|00000530| 2b 0a 5c 64 69 73 70 6c | 61 79 73 74 79 6c 65 5c |+.\displ|aystyle\|
|00000540| 66 72 61 63 7b 32 61 62 | 7d 7b 6e 7d 20 5c 5c 5b |frac{2ab|}{n} \\[|
|00000550| 32 6d 6d 5d 0a 5c 4c 65 | 66 74 72 69 67 68 74 61 |2mm].\Le|ftrighta|
|00000560| 72 72 6f 77 20 26 20 28 | 31 20 2d 20 5c 64 69 73 |rrow & (|1 - \dis|
|00000570| 70 6c 61 79 73 74 79 6c | 65 5c 66 72 61 63 7b 31 |playstyl|e\frac{1|
|00000580| 7d 7b 6e 5e 32 7d 29 20 | 62 5e 32 20 26 5c 67 65 |}{n^2}) |b^2 &\ge|
|00000590| 26 0a 5c 64 69 73 70 6c | 61 79 73 74 79 6c 65 5c |&.\displ|aystyle\|
|000005a0| 66 72 61 63 7b 32 61 62 | 7d 7b 6e 7d 5c 5c 5b 32 |frac{2ab|}{n}\\[2|
|000005b0| 6d 6d 5d 0a 5c 4c 65 66 | 74 72 69 67 68 74 61 72 |mm].\Lef|trightar|
|000005c0| 72 6f 77 20 26 20 5c 64 | 69 73 70 6c 61 79 73 74 |row & \d|isplayst|
|000005d0| 79 6c 65 5c 66 72 61 63 | 7b 62 7d 7b 61 7d 20 26 |yle\frac|{b}{a} &|
|000005e0| 5c 67 65 26 20 5c 64 69 | 73 70 6c 61 79 73 74 79 |\ge& \di|splaysty|
|000005f0| 6c 65 5c 66 72 61 63 7b | 32 6e 7d 7b 28 6e 5e 32 |le\frac{|2n}{(n^2|
|00000600| 0a 2d 31 29 7d 5c 5c 5b | 32 6d 6d 5d 0a 5c 6d 62 |.-1)}\\[|2mm].\mb|
|00000610| 6f 78 7b 6f 72 20 7d 20 | 20 20 20 20 20 26 20 28 |ox{or } | & (|
|00000620| 5c 64 69 73 70 6c 61 79 | 73 74 79 6c 65 5c 66 72 |\display|style\fr|
|00000630| 61 63 7b 62 7d 7b 61 7d | 29 6e 5e 32 20 2d 20 32 |ac{b}{a}|)n^2 - 2|
|00000640| 6e 20 2d 28 5c 64 69 73 | 70 6c 61 79 73 74 79 6c |n -(\dis|playstyl|
|00000650| 65 0a 5c 66 72 61 63 7b | 62 7d 7b 61 7d 29 20 26 |e.\frac{|b}{a}) &|
|00000660| 5c 67 65 26 20 30 0a 5c | 65 6e 64 7b 61 72 72 61 |\ge& 0.\|end{arra|
|00000670| 79 7d 5c 68 66 69 6c 6c | 5c 5d 0a 0a 3e 46 72 6f |y}\hfill|\]..>Fro|
|00000680| 6d 20 74 68 65 20 71 75 | 61 64 72 61 74 69 63 20 |m the qu|adratic |
|00000690| 65 71 75 61 74 69 6f 6e | 20 61 62 6f 76 65 2c 20 |equation| above, |
|000006a0| 77 65 20 66 69 6e 61 6c | 6c 79 20 67 65 74 20 61 |we final|ly get a|
|000006b0| 6e 20 65 78 70 72 65 73 | 73 69 6f 6e 20 66 6f 72 |n expres|sion for|
|000006c0| 20 24 6e 24 2c 0a 5c 5b | 20 6e 20 5c 3b 3d 5c 3b | $n$,.\[| n \;=\;|
|000006d0| 20 5c 66 72 61 63 7b 32 | 20 5c 70 6d 20 5c 73 71 | \frac{2| \pm \sq|
|000006e0| 72 74 7b 34 20 2b 20 34 | 28 5c 66 72 61 63 7b 62 |rt{4 + 4|(\frac{b|
|000006f0| 7d 7b 61 7d 29 5e 32 7d | 7d 7b 5c 66 72 61 63 7b |}{a})^2}|}{\frac{|
|00000700| 32 62 7d 7b 61 7d 7d 0a | 20 20 20 20 20 20 5c 3b |2b}{a}}.| \;|
|00000710| 3d 5c 3b 20 5c 66 72 61 | 63 7b 31 20 5c 70 6d 20 |=\; \fra|c{1 \pm |
|00000720| 5c 73 71 72 74 7b 31 20 | 2b 20 28 5c 66 72 61 63 |\sqrt{1 |+ (\frac|
|00000730| 7b 62 7d 7b 61 7d 29 5e | 32 7d 7d 7b 5c 66 72 61 |{b}{a})^|2}}{\fra|
|00000740| 63 7b 62 7d 7b 61 7d 7d | 20 5c 5d 0a 0a 4f 6e 6c |c{b}{a}}| \]..Onl|
|00000750| 79 20 74 68 65 20 24 2b | 24 76 65 20 72 6f 6f 74 |y the $+|$ve root|
|00000760| 20 69 6e 74 65 72 65 73 | 74 73 20 75 73 20 73 69 | interes|ts us si|
|00000770| 6e 63 65 20 24 6e 24 20 | 68 61 73 20 74 6f 20 62 |nce $n$ |has to b|
|00000780| 65 20 70 6f 73 69 74 69 | 76 65 2e 0a 4e 6f 74 65 |e positi|ve..Note|
|00000790| 20 74 68 61 74 20 74 68 | 65 20 74 65 72 6d 20 75 | that th|e term u|
|000007a0| 6e 64 65 72 20 74 68 65 | 20 72 6f 6f 74 20 69 73 |nder the| root is|
|000007b0| 20 20 62 6f 75 6e 64 65 | 64 20 61 62 6f 76 65 20 | bounde|d above |
|000007c0| 61 6e 64 20 62 65 6c 6f | 77 20 28 73 69 6e 63 65 |and belo|w (since|
|000007d0| 0a 24 5c 66 72 61 63 7b | 62 7d 7b 61 7d 20 5c 6c |.$\frac{|b}{a} \l|
|000007e0| 65 20 31 24 29 3a 0a 5c | 5b 31 20 5c 3b 5c 6c 65 |e 1$):.\|[1 \;\le|
|000007f0| 5c 3b 20 5c 73 71 72 74 | 7b 31 20 2b 20 28 5c 66 |\; \sqrt|{1 + (\f|
|00000800| 72 61 63 7b 62 7d 7b 61 | 7d 29 5e 32 7d 20 5c 3b |rac{b}{a|})^2} \;|
|00000810| 5c 6c 65 5c 3b 20 5c 73 | 71 72 74 7b 32 7d 5c 5d |\le\; \s|qrt{2}\]|
|00000820| 0a 0a 48 65 6e 63 65 2c | 20 77 65 20 68 61 76 65 |..Hence,| we have|
|00000830| 20 74 77 6f 20 76 61 6c | 75 65 73 20 66 6f 72 20 | two val|ues for |
|00000840| 24 6e 24 2c 0a 5c 5b 20 | 6e 5f 6c 5c 3b 3d 5c 3b |$n$,.\[ |n_l\;=\;|
|00000850| 20 5c 66 72 61 63 7b 31 | 2b 31 7d 7b 5c 66 72 61 | \frac{1|+1}{\fra|
|00000860| 63 7b 62 7d 7b 61 7d 7d | 20 5c 3b 3d 5c 3b 20 5c |c{b}{a}}| \;=\; \|
|00000870| 66 72 61 63 7b 32 61 7d | 7b 62 7d 3b 5c 3b 5c 3b |frac{2a}|{b};\;\;|
|00000880| 5c 3b 5c 3b 5c 3b 5c 3b | 5c 3b 5c 3b 5c 3b 5c 3b |\;\;\;\;|\;\;\;\;|
|00000890| 0a 6e 5f 75 20 5c 3b 3d | 5c 3b 20 5c 66 72 61 63 |.n_u \;=|\; \frac|
|000008a0| 7b 31 2b 20 5c 73 71 72 | 74 7b 32 7d 7d 7b 5c 66 |{1+ \sqr|t{2}}{\f|
|000008b0| 72 61 63 7b 62 7d 7b 61 | 7d 7d 20 5c 3b 3d 5c 3b |rac{b}{a|}} \;=\;|
|000008c0| 20 5c 66 72 61 63 7b 28 | 31 2b 20 5c 73 71 72 74 | \frac{(|1+ \sqrt|
|000008d0| 7b 32 7d 29 61 7d 7b 62 | 7d 0a 5c 5d 0a 25 0a 77 |{2})a}{b|}.\].%.w|
|000008e0| 68 69 63 68 20 66 69 6e | 61 6c 6c 79 20 67 69 76 |hich fin|ally giv|
|000008f0| 65 73 20 75 73 20 61 20 | 6c 6f 77 65 72 20 61 6e |es us a |lower an|
|00000900| 64 20 61 6e 20 75 70 70 | 65 72 20 62 6f 75 6e 64 |d an upp|er bound|
|00000910| 20 66 6f 72 20 24 63 24 | 2c 20 74 68 65 20 50 79 | for $c$|, the Py|
|00000920| 74 68 61 67 6f 72 65 61 | 6e 0a 73 71 75 61 72 65 |thagorea|n.square|
|00000930| 2d 72 6f 6f 74 2c 0a 5c | 5b 20 61 20 2b 20 5c 66 |-root,.\|[ a + \f|
|00000940| 72 61 63 7b 62 5e 32 7d | 7b 28 31 2b 20 5c 73 71 |rac{b^2}|{(1+ \sq|
|00000950| 72 74 7b 32 7d 29 61 7d | 20 5c 3b 5c 6c 65 5c 3b |rt{2})a}| \;\le\;|
|00000960| 20 63 20 5c 3b 5c 6c 65 | 5c 3b 20 61 20 2b 20 5c | c \;\le|\; a + \|
|00000970| 66 72 61 63 7b 62 5e 32 | 7d 7b 32 61 7d 5c 5d 0a |frac{b^2|}{2a}\].|
|00000980| 0a 54 68 65 73 65 20 61 | 72 65 20 76 65 72 79 20 |.These a|re very |
|00000990| 74 69 67 68 74 20 62 6f | 75 6e 64 73 2e 20 44 65 |tight bo|unds. De|
|000009a0| 6e 6f 74 69 6e 67 20 74 | 68 65 20 6c 6f 77 65 72 |noting t|he lower|
|000009b0| 20 62 6f 75 6e 64 20 61 | 73 20 24 63 5f 6c 24 20 | bound a|s $c_l$ |
|000009c0| 61 6e 64 20 75 70 70 65 | 72 0a 6f 6e 65 20 24 63 |and uppe|r.one $c|
|000009d0| 5f 75 24 2c 20 62 65 6c | 6f 77 20 61 72 65 20 73 |_u$, bel|ow are s|
|000009e0| 6f 6d 65 20 6e 75 6d 65 | 72 69 63 61 6c 20 72 65 |ome nume|rical re|
|000009f0| 73 75 6c 74 73 20 28 24 | 63 24 20 3d 20 65 78 61 |sults ($|c$ = exa|
|00000a00| 63 74 20 73 71 75 61 72 | 65 2d 72 6f 6f 74 29 3a |ct squar|e-root):|
|00000a10| 0a 0a 5c 62 65 67 69 6e | 7b 63 65 6e 74 65 72 7d |..\begin|{center}|
|00000a20| 0a 5c 62 65 67 69 6e 7b | 74 61 62 75 6c 61 72 7d |.\begin{|tabular}|
|00000a30| 7b 7c 63 7c 63 7c 63 7c | 63 7c 63 7c 7d 0a 5c 68 |{|c|c|c||c|c|}.\h|
|00000a40| 6c 69 6e 65 0a 61 20 26 | 20 62 20 26 20 63 20 26 |line.a &| b & c &|
|00000a50| 20 24 63 5f 6c 24 20 26 | 20 24 63 5f 75 24 5c 5c | $c_l$ &| $c_u$\\|
|00000a60| 0a 5c 68 6c 69 6e 65 0a | 31 30 30 2e 30 20 26 20 |.\hline.|100.0 & |
|00000a70| 31 30 30 2e 30 20 26 20 | 31 34 31 2e 34 32 31 33 |100.0 & |141.4213|
|00000a80| 20 26 20 31 34 31 2e 34 | 32 31 33 20 26 20 31 35 | & 141.4|213 & 15|
|00000a90| 30 2e 30 5c 20 5c 20 5c | 20 5c 20 5c 20 5c 20 5c |0.0\ \ \| \ \ \ \|
|00000aa0| 5c 0a 31 30 30 2e 30 20 | 26 20 5c 20 5c 2c 38 30 |\.100.0 |& \ \,80|
|00000ab0| 2e 30 20 20 26 20 31 32 | 38 2e 30 36 34 32 20 26 |.0 & 12|8.0642 &|
|00000ac0| 20 31 32 36 2e 35 30 39 | 36 20 26 20 31 33 32 2e | 126.509|6 & 132.|
|00000ad0| 30 5c 20 5c 20 5c 20 5c | 20 5c 20 5c 20 20 5c 5c |0\ \ \ \| \ \ \\|
|00000ae0| 0a 5c 20 5c 2c 33 30 2e | 30 20 20 26 20 5c 20 5c |.\ \,30.|0 & \ \|
|00000af0| 2c 32 30 2e 30 20 20 26 | 20 5c 20 5c 2c 33 36 2e |,20.0 &| \ \,36.|
|00000b00| 30 35 35 35 20 20 26 20 | 5c 20 33 35 2e 35 32 32 |0555 & |\ 35.522|
|00000b10| 38 20 20 26 20 5c 20 33 | 36 2e 36 36 36 37 20 5c |8 & \ 3|6.6667 \|
|00000b20| 5c 0a 5c 68 6c 69 6e 65 | 0a 5c 65 6e 64 7b 74 61 |\.\hline|.\end{ta|
|00000b30| 62 75 6c 61 72 7d 0a 5c | 65 6e 64 7b 63 65 6e 74 |bular}.\|end{cent|
|00000b40| 65 72 7d 0a 0a 57 69 74 | 68 20 74 68 65 20 61 62 |er}..Wit|h the ab|
|00000b50| 6f 76 65 20 62 6f 75 6e | 64 73 2c 20 6f 6e 65 20 |ove boun|ds, one |
|00000b60| 63 61 6e 20 64 6f 20 61 | 20 6c 69 6e 65 61 72 20 |can do a| linear |
|00000b70| 69 6e 74 65 72 70 6f 6c | 61 74 69 6f 6e 20 74 6f |interpol|ation to|
|00000b80| 20 67 65 74 20 65 78 61 | 63 74 20 76 61 6c 75 65 | get exa|ct value|
|00000b90| 73 2e 0a 49 6e 20 6f 75 | 72 20 63 61 73 65 2c 20 |s..In ou|r case, |
|00000ba0| 73 69 6e 63 65 20 69 74 | 20 69 73 20 6e 6f 74 20 |since it| is not |
|00000bb0| 72 65 71 75 69 72 65 64 | 20 74 6f 20 62 65 20 7b |required| to be {|
|00000bc0| 5c 69 74 20 65 78 74 72 | 65 6d 65 6c 79 5c 2f 7d |\it extr|emely\/}|
|00000bd0| 20 61 63 63 75 72 61 74 | 65 2c 20 66 6f 72 20 0a | accurat|e, for .|
|00000be0| 65 73 74 69 6d 61 74 69 | 6e 67 20 74 68 65 20 73 |estimati|ng the s|
|00000bf0| 71 75 61 72 65 2d 72 6f | 6f 74 20 69 6e 20 74 68 |quare-ro|ot in th|
|00000c00| 65 20 6c 69 6e 65 20 64 | 72 61 77 69 6e 67 20 63 |e line d|rawing c|
|00000c10| 6f 6d 6d 61 6e 64 73 2c | 0a 77 65 20 73 69 6d 70 |ommands,|.we simp|
|00000c20| 6c 79 20 74 61 6b 65 20 | 74 68 65 20 6d 69 64 70 |ly take |the midp|
|00000c30| 6f 69 6e 74 20 6f 66 20 | 74 68 65 20 74 77 6f 20 |oint of |the two |
|00000c40| 62 6f 75 6e 64 73 2e 20 | 46 6f 72 20 73 6d 61 6c |bounds. |For smal|
|00000c50| 6c 0a 6e 75 6d 62 65 72 | 73 2c 20 77 68 69 63 68 |l.number|s, which|
|00000c60| 20 69 73 20 65 78 70 65 | 63 74 65 64 20 74 6f 20 | is expe|cted to |
|00000c70| 62 65 20 74 68 65 20 63 | 61 73 65 20 6d 6f 73 74 |be the c|ase most|
|00000c80| 20 6f 66 20 74 68 65 20 | 74 69 6d 65 2c 0a 74 68 | of the |time,.th|
|00000c90| 65 20 65 72 72 6f 72 20 | 69 73 20 76 65 72 79 20 |e error |is very |
|00000ca0| 73 6d 61 6c 6c 2e 0a 0a | 57 69 74 68 20 73 6f 6d |small...|With som|
|00000cb0| 65 20 61 6c 67 65 62 72 | 61 2c 20 77 65 20 67 65 |e algebr|a, we ge|
|00000cc0| 74 20 74 68 65 20 6d 69 | 64 2d 70 6f 69 6e 74 20 |t the mi|d-point |
|00000cd0| 65 73 74 69 6d 61 74 65 | 20 6f 66 20 24 63 24 2c |estimate| of $c$,|
|00000ce0| 0a 5c 5b 63 20 3d 20 5c | 66 72 61 63 7b 63 5f 6c |.\[c = \|frac{c_l|
|00000cf0| 2b 63 5f 75 7d 7b 32 7d | 20 3d 20 61 20 2b 20 5c |+c_u}{2}| = a + \|
|00000d00| 66 72 61 63 7b 62 5e 32 | 20 2a 20 28 33 20 2b 20 |frac{b^2| * (3 + |
|00000d10| 5c 73 71 72 74 7b 32 7d | 29 7d 7b 61 2a 34 2a 28 |\sqrt{2}|)}{a*4*(|
|00000d20| 31 20 2b 20 5c 73 71 72 | 74 7b 32 7d 29 7d 0a 3d |1 + \sqr|t{2})}.=|
|00000d30| 20 61 20 2b 20 5c 66 72 | 61 63 7b 30 2e 34 35 37 | a + \fr|ac{0.457|
|00000d40| 5c 3a 20 62 5e 32 7d 7b | 61 7d 20 5c 3b 5c 3b 5c |\: b^2}{|a} \;\;\|
|00000d50| 3b 5c 3b 28 61 20 5c 67 | 65 20 62 29 20 5c 5d 0a |;\;(a \g|e b) \].|
|00000d60| 0a 54 68 65 20 6d 61 63 | 72 6f 20 5c 76 65 72 62 |.The mac|ro \verb|
|00000d70| 7c 5c 73 71 72 74 61 6e | 64 73 74 75 66 66 7c 20 ||\sqrtan|dstuff| |
|00000d80| 75 73 65 73 20 74 68 65 | 20 61 62 6f 76 65 20 66 |uses the| above f|
|00000d90| 6f 72 6d 75 6c 61 20 66 | 6f 72 20 65 73 74 69 6d |ormula f|or estim|
|00000da0| 61 74 69 6e 67 20 74 68 | 65 0a 6e 75 6d 62 65 72 |ating th|e.number|
|00000db0| 20 6f 66 20 70 6f 69 6e | 74 73 20 28 66 6f 72 20 | of poin|ts (for |
|00000dc0| 5c 76 65 72 62 7c 5c 64 | 6f 74 74 65 64 6c 69 6e |\verb|\d|ottedlin|
|00000dd0| 65 7c 20 6d 61 63 72 6f | 29 20 61 6e 64 20 6e 75 |e| macro|) and nu|
|00000de0| 6d 62 65 72 20 6f 66 20 | 73 65 67 6d 65 6e 74 73 |mber of |segments|
|00000df0| 20 28 66 6f 72 0a 5c 76 | 65 72 62 7c 5c 64 61 73 | (for.\v|erb|\das|
|00000e00| 68 6c 69 6e 65 7c 20 6d | 61 63 72 6f 29 2e 20 54 |hline| m|acro). T|
|00000e10| 68 65 20 5c 76 65 72 62 | 7c 5c 73 71 72 74 61 6e |he \verb||\sqrtan|
|00000e20| 64 73 74 75 66 66 7c 20 | 6d 61 63 72 6f 2c 20 69 |dstuff| |macro, i|
|00000e30| 6e 73 74 65 61 64 20 6f | 66 0a 63 61 6c 63 75 6c |nstead o|f.calcul|
|00000e40| 61 74 69 6e 67 20 74 68 | 65 20 6c 65 6e 67 74 68 |ating th|e length|
|00000e50| 20 6f 66 20 74 68 65 20 | 6c 69 6e 65 2c 20 64 69 | of the |line, di|
|00000e60| 72 65 63 74 6c 79 20 63 | 61 6c 63 75 6c 61 74 65 |rectly c|alculate|
|00000e70| 73 20 74 68 65 20 7b 5c | 69 74 20 6e 75 6d 62 65 |s the {\|it numbe|
|00000e80| 72 5c 2f 7d 20 6f 66 0a | 73 65 67 6d 65 6e 74 73 |r\/} of.|segments|
|00000e90| 20 6f 66 20 61 20 67 69 | 76 65 6e 20 6c 65 6e 67 | of a gi|ven leng|
|00000ea0| 74 68 2e 20 46 6f 72 20 | 65 78 61 6d 70 6c 65 2c |th. For |example,|
|00000eb0| 20 74 6f 20 64 72 61 77 | 20 61 20 64 6f 74 74 65 | to draw| a dotte|
|00000ec0| 64 20 6c 69 6e 65 20 66 | 72 6f 6d 0a 28 24 78 5f |d line f|rom.($x_|
|00000ed0| 31 2c 79 5f 31 24 29 20 | 74 6f 20 28 24 78 5f 32 |1,y_1$) |to ($x_2|
|00000ee0| 2c 79 5f 32 24 29 20 77 | 69 74 68 20 74 68 65 20 |,y_2$) w|ith the |
|00000ef0| 69 6e 74 65 72 2d 64 6f | 74 2d 67 61 70 20 61 73 |inter-do|t-gap as|
|00000f00| 20 24 64 24 2c 20 77 65 | 20 65 73 74 69 6d 61 74 | $d$, we| estimat|
|00000f10| 65 20 74 68 65 0a 6e 75 | 6d 62 65 72 20 6f 66 20 |e the.nu|mber of |
|00000f20| 64 6f 74 73 20 24 6e 24 | 20 75 73 69 6e 67 20 74 |dots $n$| using t|
|00000f30| 68 65 20 66 6f 6c 6c 6f | 77 69 6e 67 20 65 78 70 |he follo|wing exp|
|00000f40| 72 65 73 73 69 6f 6e 2c | 0a 5c 5b 20 6e 3d 20 5c |ression,|.\[ n= \|
|00000f50| 66 72 61 63 7b 5c 44 65 | 6c 74 61 20 78 7d 7b 64 |frac{\De|lta x}{d|
|00000f60| 7d 20 2b 20 0a 5c 66 72 | 61 63 7b 30 2e 34 35 37 |} + .\fr|ac{0.457|
|00000f70| 5c 3a 28 5c 66 72 61 63 | 7b 5c 44 65 6c 74 61 20 |\:(\frac|{\Delta |
|00000f80| 79 7d 7b 64 7d 29 5e 32 | 7d 7b 5c 66 72 61 63 7b |y}{d})^2|}{\frac{|
|00000f90| 5c 44 65 6c 74 61 20 78 | 7d 7b 64 7d 7d 20 5c 3b |\Delta x|}{d}} \;|
|00000fa0| 5c 3b 5c 3b 5c 3b 5c 3b | 5c 3b 5c 3b 0a 5c 44 65 |\;\;\;\;|\;\;.\De|
|00000fb0| 6c 74 61 20 78 20 3d 20 | 7c 78 5f 32 20 2d 20 78 |lta x = ||x_2 - x|
|00000fc0| 5f 31 7c 20 5c 6d 62 6f | 78 7b 20 61 6e 64 20 7d |_1| \mbo|x{ and }|
|00000fd0| 20 5c 44 65 6c 74 61 20 | 79 20 3d 20 7c 79 5f 32 | \Delta |y = |y_2|
|00000fe0| 20 2d 20 79 5f 31 7c 5c | 5d 0a 61 73 73 75 6d 69 | - y_1|\|].assumi|
|00000ff0| 6e 67 20 24 5c 44 65 6c | 74 61 20 78 20 5c 67 65 |ng $\Del|ta x \ge|
|00001000| 20 5c 44 65 6c 74 61 20 | 79 24 20 28 6f 74 68 65 | \Delta |y$ (othe|
|00001010| 72 77 69 73 65 20 74 68 | 65 79 20 6d 61 79 20 62 |rwise th|ey may b|
|00001020| 65 20 69 6e 74 65 72 2d | 63 68 61 6e 67 65 64 29 |e inter-|changed)|
|00001030| 2e 0a 0a 4e 6f 74 65 20 | 74 68 61 74 20 73 69 6e |...Note |that sin|
|00001040| 63 65 20 64 69 76 69 73 | 69 6f 6e 73 20 69 6e 20 |ce divis|ions in |
|00001050| 5c 54 65 58 5c 20 61 72 | 65 20 69 6e 74 65 67 65 |\TeX\ ar|e intege|
|00001060| 72 2d 64 69 76 69 73 69 | 6f 6e 73 2c 20 69 74 20 |r-divisi|ons, it |
|00001070| 69 73 20 73 69 6d 70 6c | 65 72 20 74 6f 0a 64 65 |is simpl|er to.de|
|00001080| 61 6c 20 69 6e 20 60 60 | 6e 75 6d 62 65 72 20 6f |al in ``|number o|
|00001090| 66 20 73 65 67 6d 65 6e | 74 73 27 27 20 72 61 74 |f segmen|ts'' rat|
|000010a0| 68 65 72 20 74 68 61 6e | 20 61 63 74 75 61 6c 20 |her than| actual |
|000010b0| 6c 65 6e 67 74 68 73 0a | 28 65 2e 67 2e 20 69 6e |lengths.|(e.g. in|
|000010c0| 20 74 68 65 20 65 78 70 | 72 65 73 73 69 6f 6e 20 | the exp|ression |
|000010d0| 61 62 6f 76 65 2c 20 24 | 5c 66 72 61 63 7b 5c 44 |above, $|\frac{\D|
|000010e0| 65 6c 74 61 20 78 7d 7b | 64 7d 20 3d 20 24 20 6e |elta x}{|d} = $ n|
|000010f0| 75 6d 62 65 72 20 6f 66 | 20 73 65 67 6d 65 6e 74 |umber of| segment|
|00001100| 73 0a 61 6c 6f 6e 67 20 | 58 2d 61 78 69 73 29 2e |s.along |X-axis).|
|00001110| 0a 0a 5c 6e 6f 69 6e 64 | 65 6e 74 0a 7b 5c 62 66 |..\noind|ent.{\bf|
|00001120| 20 43 61 76 65 61 74 3a | 7d 20 54 68 65 20 61 70 | Caveat:|} The ap|
|00001130| 70 72 6f 61 63 68 20 70 | 72 65 73 65 6e 74 65 64 |proach p|resented|
|00001140| 20 68 65 72 65 20 66 6f | 72 20 65 73 74 69 6d 61 | here fo|r estima|
|00001150| 74 69 6f 6e 20 6f 66 0a | 50 79 74 68 61 67 6f 72 |tion of.|Pythagor|
|00001160| 65 61 6e 20 73 71 75 61 | 72 65 2d 72 6f 6f 74 20 |ean squa|re-root |
|00001170| 69 73 20 61 6e 20 69 6e | 64 65 70 65 6e 64 65 6e |is an in|dependen|
|00001180| 74 20 65 66 66 6f 72 74 | 20 62 79 20 74 68 65 20 |t effort| by the |
|00001190| 61 75 74 68 6f 72 2e 20 | 49 74 20 6d 61 79 0a 61 |author. |It may.a|
|000011a0| 6c 72 65 61 64 79 20 65 | 78 69 73 74 20 69 6e 20 |lready e|xist in |
|000011b0| 74 68 65 20 6c 69 74 65 | 72 61 74 75 72 65 20 2d |the lite|rature -|
|000011c0| 2d 2d 20 74 68 65 20 61 | 75 74 68 6f 72 20 69 73 |-- the a|uthor is|
|000011d0| 20 6e 65 69 74 68 65 72 | 20 61 77 61 72 65 20 6f | neither| aware o|
|000011e0| 66 20 69 74 20 6e 6f 72 | 20 68 61 73 0a 68 65 20 |f it nor| has.he |
|000011f0| 6d 61 64 65 20 61 6e 79 | 20 73 65 72 69 6f 75 73 |made any| serious|
|00001200| 20 61 74 74 65 6d 70 74 | 73 20 61 74 20 75 6e 63 | attempt|s at unc|
|00001210| 6f 76 65 72 69 6e 67 20 | 69 74 2e 0a |overing |it.. |
+--------+-------------------------+-------------------------+--------+--------+